

Communication

Synthesis and Characterization of β-Haloalkenyl-D-bromanes: Stereoselective Markovnikov Addition of Difluoro(aryl)-D-bromane to Terminal Acetylenes

Masahito Ochiai, Yoshio Nishi, Takeshi Mori, Norihiro Tada, Takashi Suefuji, and Hermann J. Frohn

J. Am. Chem. Soc., **2005**, 127 (30), 10460-10461• DOI: 10.1021/ja051690f • Publication Date (Web): 07 July 2005 Downloaded from http://pubs.acs.org on March **25**, **2009**

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 4 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 07/07/2005

Synthesis and Characterization of β -Haloalkenyl- λ^3 -bromanes: Stereoselective Markovnikov Addition of Difluoro(aryl)- λ^3 -bromane to Terminal Acetylenes

Masahito Ochiai,*,† Yoshio Nishi,† Takeshi Mori,† Norihiro Tada,† Takashi Suefuji,† and Hermann J. Frohn[‡]

Faculty of Pharmaceutical Sciences, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan, and Anorganische Chemie, Universitat Duisburg-Essen, Lotharstrasse 1, D-47048 Duisburg, Germany

Received March 17, 2005; E-mail: mochiai@ph.tokushima-u.ac.jp

Hypervalent 1-alkenyl(phenyl)- λ^3 -iodanes enjoy their rich chemistry in modern organic synthesis.¹ Because of the very high leaving group ability of phenyl- λ^3 -iodanyl groups,² they undergo unusual vinylic S_N2 displacement by the reaction with a wide range of nucleophiles.³ They also serve as excellent progenitors for generation of alkylidene carbenes.⁴

In a marked contrast, little is known concerning the chemistry of the closely related group 17 1-alkenyl- λ^3 -bromanes because a method for their syntheses is not available and no well-established 1-alkenyl- λ^3 -bromanes are known. In 1985, Olah and co-workers reported the preparation of vinyl(methyl)(hexafluoroantimonato)- λ^3 -bromane in chlorosulfonyl fluoride solution;⁵ alkylation of vinyl bromide with a large excess of methyl fluoride—antimony pentafluoride complex at -78 °C in SO₂ClF afforded a light-yellow colored solution of the vinyl(methyl)- λ^3 -bromane, whose ¹³C NMR spectrum at -90 °C showed three absorptions at δ 132.9(C_{β}), 120.9 (C_{α}), and 44.1(Me) ppm. The vinyl(methyl)- λ^3 -bromane was found to be stable at -78 °C for only several hours (ca. 4 h), after which polymerization sets in. We report herein, for the first time, the synthesis, isolation, and characterization of β -fluoro- and β -chloroalkenyl(aryl)- λ^3 -bromanes.

Recently, we reported the synthesis of 1-alkynyl(aryl)(tetrafluoroborato)- λ^3 -bromanes through ligand exchange of difluoro- λ^3 bromane **1** with 1-alkynylstannanes;⁶ thus, reaction of 1-(trimethylstannyl)-1-alkynes with *p*-trifluoromethylphenyl(difluoro)- λ^3 bromane (**1**) in the presence of BF₃-Et₂O at -78 °C in dichloromethane afforded 1-alkynyl(aryl)- λ^3 -bromanes in high yields. Use of unsubstituted terminal alkynes instead of 1-alkynylstannanes, however, dramatically changed the reaction course and resulted in fluoro- λ^3 -bromanation of the triple bonds in a Markovnikov fashion, yielding β -fluoroalkenyl- λ^3 -bromanes **2** (Scheme 1).

Exposure of 1-decyne to difluoro- λ^3 -bromane **1** (1.5 equiv) and BF₃-Et₂O (1.5 equiv) at -78 °C in dichloromethane under argon afforded a 62% yield of β -fluoro-1-decenyl- λ^3 -bromane 2a (R = $n-C_8H_{17}$) stereoselectively in an E:Z ratio of 96:4 after repeated decantation with hexane (Table 1, entry 2). In this reaction, (E)- β -ethoxy-**3a** (7%) and (*E*)- β -chloro-1-decenyl- λ^3 -bromane **3b** (4%) were obtained as byproducts. Without using BF₃, no formation of these vinyl- λ^3 -bromanes was observed. Hypervalent F-Br-F bonding in 1 is efficiently polarized by the coordination of BF₃, and the positive charge on the bromine(III) is increased. In contrast to ethoxy- λ^3 -bromane **3a**, which gradually decomposes even during purification by hexane decantation, fluoro- λ^3 -bromane 2a is stable and no decomposition was detected when it was left standing in a refrigerator over 1 month. The β -ethoxy group of **3a** originates from the ligand Et₂O of Lewis acid BF₃,⁷ and the formation of β -alkoxybromanes can be controlled by using sterically more

Scheme 1

Table 1. Addition of Difluoro- λ^3 -bromane **1** to 1-Decyne, Yielding β -Fluorodecenyl- λ^3 -bromane **2a**^a

entry	BF ₃ ROR′ (equiv)	solvent	temp (°C)	time (h)	yield (%) ^b	ratio <i>E</i> : <i>Z</i>
1^c	Et ₂ O (1.1)	CH ₂ Cl ₂	-78	3	50 ^{<i>d</i>,<i>e</i>}	95:5
2	$Et_2O(1.5)$	CH_2Cl_2	-78	3	$62^{d,e}$	96:4
3	$Et_2O(3)$	CH_2Cl_2	-78	3	61 ^{d,e}	98:2
4	THF (1.5)	CH_2Cl_2	-78	5	56	96:4
5	t-BuOMe (1.5)	CH ₂ Cl ₂	-78 to 25	5	33 ^e	87:13
6	<i>i</i> -Pr ₂ O (1.5)	CH ₂ Cl ₂	-78 to 25	5	72^e	96:4
7 f	<i>i</i> -Pr ₂ O (1.5)	CHCl ₃	-60 to 25	3.5	74	94:6
8	<i>i</i> -Pr ₂ O (1.5)	CCl ₄	-20 to 25	3.5	60	95:5
9	<i>i</i> -Pr ₂ O (1.5)	Cl(CH ₂) ₂ Cl	-30 to 25	3.5	47^{g}	92:8
10	AgBF ₄ (1.5)	CHCl ₃	-60 to 25	3.5	44	75:25

^{*a*} Conditions: difluorobromane **1** (1.5 equiv), Ar. ^{*b*} Yields after purification by repeated decantation with hexane. ^{*c*} Difluorobromane **1** (1.1 equiv). ^{*d*} (*E*)- β -Ethoxybromane **3a** (7–15%) was obtained. ^{*e*} (*E*)- β -Chlorobromane **3b** (3–13%) was obtained. ^{*f*} Difluorobromane **1** (2 equiv). ^{*g*} **3b** (19%) was obtained.

demanding BF₃-*i*-Pr₂O (Table 1, entry 6). The solvent dichloromethane transfers the chlorine atom to the electron-deficient reactive species, such as carbocations and carbenes, via the intermediacy of chloronium ions and ylides, respectively,⁸ and in our reactions, it gives rise to the other byproduct, β -chlorodecenyl- λ^3 -bromane **3b**. In fact, use of a less nucleophilic solvent,^{8a} such as chloroform or carbon tetrachloride, showed no evidences for formation of **3b**, whereas more nucleophilic 1,2-dichloroethane resulted in an increased yield (19%) of **3b** at the expense of the formation of **2a** (Table 1, entries 7–9). AgBF₄ also activates difluorobromane **1** in the reaction but affords a moderate yield of **2a** with a low stereoselectivity (Table 1, entry 10).⁹

Table 2 summarizes the results of regio- and stereoselective fluoro- λ^3 -bromanation of terminal alkynes in chloroform in the presence of BF₃-*i*-Pr₂O. Acetoxy, chloro, methoxycarbonyl, and methoxy groups are compatible with our β -fluorovinyl- λ^3 -bromane synthesis (Table 2, entries 6–9). Interesting methine fluorination of the *iso*-butyl group afforded difluorinated vinyl- λ^3 -bromane **2k** (R = Me₂CFCH₂) as a minor product (Table 2, entry 3). In the reaction of sterically demanding 3,3-dimethyl-1-butyne, competition between β -fluorination and β -methylation via 1,2-methyl shift takes place and gave a mixture of β -fluorovinyl- λ^3 -bromane **2f** (40%) and (*Z*)-3-fluoro-2,3-dimethyl-1-butenyl- λ^3 -bromane (13%) (Table 2, entry 5).

[†] University of Tokushima. [‡] Universitat Duisburg-Essen

Table 2. Synthesis of β -Fluorovinyl- λ^3 -bromanes 2^a

entry	R	difluoro-λ ³ -bromane 1 (equiv) 2		yield (%) ^b	ratio <i>E</i> :Z
1	<i>n</i> -Bu	2.5	2b	88 ^c	93:7
2	n-C ₆ H ₁₃	2	2c	75	95:5
3	<i>i</i> -Bu	2.5^{d}	2d	81^e	91:9
4	Me ₂ CH(CH ₂) ₂	2	2e	82^{c}	93:7
5	t-Bu	2.5	2f	40 ^f	86:14
6	AcO(CH ₂) ₉	2	2g	60	94:6
7	Cl(CH ₂) ₉	2	2h	72	97:3
8	MeO ₂ C(CH ₂) ₈	2.5	2i	62	95:5
9	MeO(CH ₂) ₉	2	2ј	65	97:3

^{*a*} Conditions: CHCl₃, BF₃-*i*-Pr₂O (1.5 equiv), -60 to 25 °C (3.5 h), Ar. ^{*b*} Yields after purification by repeated decantation with hexane. ^{*c*} Contaminated with a small amount of impurities. ^{*d*} BF₃-*i*-Pr₂O (2.5 equiv). ^{*e*} Vinyl- λ^3 -bromane **2k** (16%) was obtained. ^{*f*} (*Z*)-3-Fluoro-2,3-dimethylbutenyl- λ^3 bromane (13%) was obtained.

Scheme 2

To develop an efficient method for the synthesis of β -chlorovinyl- λ^3 -bromanes, use of an external chloride anion, Bu₄NCl, as an additive was examined but found to be fruitless;¹⁰ however, we found that the internal delivery of a soft chlorine atom will make possible the formation of β -chlorovinyl- λ^3 -bromanes. Thus, 5-chloro-1-pentyne and 5-chloro-4-methyl-1-pentyne by the reaction with difluorobromane **1** produced (*E*)- β -chloro- ω -fluorovinyl- λ^3 -bromanes **4a** and **4b**, respectively, in high yields (Scheme 2). These reactions are exclusively stereoselective to the limits of ¹H NMR (400 MHz) detection, and no formation of *Z*-isomers was observed. The reaction probably involves a 1,4-chlorine shift from sp³ to sp² carbon atoms as a key step¹¹ and is termed a domino λ^3 -bromanet **4** contains three kinds of halogen atoms, F, Cl, and Br, in the molecule.

Very interestingly, in the case of 4,4-dialkyl-1-pentynes, the domino reaction was accompanied by an additional 1,2-alkyl rearrangement. For instance, 5-chloro-4,4-dimethyl-1-pentyne afforded (*E*)- β -chloro- δ -fluorohexenyl- λ^3 -bromane **5** in 78% yield (Scheme 3). The domino λ^3 -bromanation—chlorine shift—alkyl shift—fluorination reaction of 1-chloromethyl-1-propynylcyclohexane resulted in the ring-enlargement of cyclohexane, yielding fluorocycloheptane **6** in 93% yield.

X-ray crystallographic analysis of fluorocycloheptane **6**, shown in Figure 1, illustrates a T-shaped structure with one fluorine atom of the BF₄ ligand at the apical site of the bromine(III) center with a near-linear C1–Br1···F7 triad (172.6(2)°). The root mean square deviation of the four atoms (Br1, C1, C11, and F7) from their least-squares planes is 0.071(2) Å.

Reaction mechanism involving the formation of tetracoordinated λ^3 -bromane **7** (Scheme 4) is compatible with the formation of unrearranged and rearranged β -haloalkenyl(aryl)- λ^3 -bromanes.

Figure 1. ORTEP drawing of **6**. Selected bond lengths (Å) and angles (deg): Br(1)-C(1) 1.886(5), Br(1)-C(11) 1.908(5), C(1)-C(2) 1.312(8), $Br(1)\cdots F(7) 2.766(3)$, C(1)-Br(1)-C(11) 96.8(2), C(1)-C(2)-C(3) 130.1-(4).

Scheme 4

Supporting Information Available: Experimental procedures, compound characterization data, and X-ray crystallographic data in CIF format for **6**. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For recent reviews, see: (a) Ochiai, M. In Topics in Current Chemistry; Wirth, T., Ed.; Springer: Berlin, 2003; Vol. 224, p 5. (b) Stang, P. J. J. Org. Chem. 2003, 68, 2997. (c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (d) Koser, G. F. In The Chemistry of Halides, Pseudo-Halides and Azides, Supplement D2; Patai S., Rappoport, Z., Eds; Wiley: New York, 1995; Chapter 21. (e) Varvoglis, A. The Chemistry of Polycoordinated Iodine; VCH: New York, 1992.
- (2) Okuyama, T.; Takino, T.; Sueda, T.; Ochiai, M. J. Am. Chem. Soc. 1995, 117, 3360.
- (3) (a) Ochiai, M. J. Organomet. Chem. 2000, 611, 494. (b) Ochiai, M.; Oshima, K.; Masaki, Y. J. Am. Chem. Soc. 1991, 113, 7059. (c) Okuyama, T.; Takino, T.; Sato, K.; Ochiai, M. J. Am. Chem. Soc. 1998, 120, 2275.
- (4) (a) Ochiai, M.; Takaoka, Y.; Nagao, Y. J. Am. Chem. Soc. 1988, 110, 6565.
 (b) Ochiai, M.; Kunishima, M.; Tani, S.; Nagao, Y. J. Am. Chem. Soc. 1991, 113, 3135.
- (5) Prakash, G. K. S.; Bruce, M. R.; Olah, G. A. J. Org. Chem. 1985, 50, 2405.
- (6) Ochiai, M.; Nishi, Y.; Goto, S.; Shiro, M.; Frohn, H. J. J. Am. Chem. Soc. 2003, 125, 15304.
- (7) Ochiai, M.; Kunishima, M.; Fuji, K.; Shiro, M.; Nagao, Y. J. Chem. Soc., Chem. Commun. 1988, 1076.
- (8) (a) White, E. H.; McGirk, R. H.; Aufdermarsh, C. A.; Tiwari, H. P.; Todd,
 M. J. J. Am. Chem. Soc. **1973**, 95, 8107. (b) Pirrung, M. C.; Zhang, J.;
 Lackey, K.; Sternbach, D. D.; Brown, F. J. Org. Chem. **1995**, 60, 2112.
- (9) For fluoro-λ³-iodanation of terminal alkynes, see: (a) Hara, S.; Yoshida, M.; Fukuhara, T.; Yoneda, N. *Chem. Commun.* **1998**, 965. (b) Yoshida, M.; Hara, S.; Fukuhara, T.; Yoneda, N. *Tetrahedron Lett.* **2000**, *41*, 3887.
- (10) When the reaction of entry 2 in Table 1 was carried out in the presence of Bu_4NCI (1.5 equiv), a decreased yield (23%) of **2a** and (*E*)-1,2-dichloro-1-decene (19%) was obtained. These results probably reflect partial oxidation of the chloride anion to Cl_2 by difluorobromane 1 during the reaction.
- (11) (a) Peterson, P. E.; Duddey, J. E. J. Am. Chem. Soc. 1966, 88, 4990. (b) Peterson, P. E. Acc. Chem. Res. 1971, 4, 407.

JA051690F